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The problem of irreversibility in thermodynamics is revisited and analyzed on 
the microscopic, stochastic, and macroscopic levels of description. It is 
demonstrated that Newtonian dynamics can be represented in the Reynolds form 
when each dynamical variable is decomposed into mean and fluctuation 
components. Additional equations coupling fluctuations and the mean values 
follow from the stabilization principle. The main idea of this principle is that the 
fluctuations must be selected from the condition that they suppress the original 
instability down to a neutral stability. Supplemented by the stabilization principle, 
the Hamiltonian or Lagrangian formalisms can describe the transition from fully 
reversible to irreversible motions as a result of the decomposition of chaotic 
motions (which are very likely to occur in many-body problems) into regular 
(macroscopic) motions and fluctuations. On the stochastic level of description, 
a new phenomenological force with non-Lipschitz properties is introduced. This 
force, as a resultant of a large number of collisions of a selected particle with other 
particles, has characteristics which are uniquely defined by the thermodynamic 
parameters of the process under consideration, and it represents a part of the 
mathematical formalism describing a random-walk-like process without invoking 
any probabilistic arguments. Additional non-Lipschitz thermodynamic forces are 
incorporated into macroscopic models of transport phenomena in order to 
introduce a time scale. These forces are effective only within a small domain 
around equilibria. Without causing any changes in other domains, they are 
responsible for the finite time of approaching equilibria. Such a property is very 
important for the interpretation of irreversibility on the macroscopic scale. 

I N T R O D U C T I O N  

Transport phenomena such as thermal conductivity and diffusion repre- 
sent nonequilibrium thermodynamic processes which are described by para- 
bolic partial differential equations of the following type: 
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Ou O2u 
Ot ~ij OxiOxi ~ij const (1) 

It is known that equation (1) subject to the initial condition 

u I,=0 = uo(x) (2) 

has a unique bounded solution for t > 0. 
However, for t < 0 the same problem is ill posed, and this expresses 

the fundamental property of irreversibility of thermal conductivity and dif- 
fusion. Actually this property directly follows from the second law of 
thermodynamics. 

Although solutions to equation (1) are in sufficiently good agreement 
with experiments, there are still some logical difficulties in reconciling this 
macroscopic phenomenological model with the fully reversible Hamiltonian 
dynamics on the microscopic level, since the irreversible processes described 
by (1) are completely composed of reversible events; this is known as the 
irreversibility paradox. However, strictly speaking, the formal derivation of 
equation (1) from microscopic Hamiltonian mechanics requires some addi- 
tional arguments of a probabilistic nature. But can these arguments be repre- 
sented in terms of classical mechanics? Or, more precisely, can they be 
replaced by some equivalent mechanical forces on the microscopic level? 

1. NON-LIPSCHITZ MECHANICS 

Turning to governing equations of classical dynamics 

d OL OL OR 
- i = 1, 2 . . . . .  n ( 3 )  

dl OCli Oqi O(]i' 

where L is the Lagrangian, qi, qi are the generalized coordinates and velocities, 
and R is the dissipation function, one should recall that the structure of R(qi, 
. . . .  qn) is not prescribed by Newton's laws: some additional assumptions 
need to be made in order to define it. The "natural" assumption (which has 
been never challenged) is that these functions can be expanded in Taylor 
series with respect to equilibrium states: qi = 0. Obviously this requires the 
existence of the derivative 

02R < o o  at qi--->0 

A departure from this condition was proposed in Zak (1992, 1993a,b), 
where the following dissipation function was introduced: 
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in which 

1 I~ari ~+x R-k+l~ a, 7qj ~j (4) 

Hence, the asymptotic form of (7) can be represented as 

dE 
- -  = AE (k+t)12 at E --~ 0, A = const 
dt 

(9) 

If A > 0 and k < 1, the equilibrium state E = 0 is an attractor where 
the Lipschitz condition ( I dEIdEI ---) to at E ~ 0) is violated. Such a terminal 
attractor (Zak, 1992) is approached by the solution originating at E = AE0 
> 0, in finite time: 

fo d E  _ 2AE~ I-kv2 

to = Jaeo aE{k+t)/2 (1 - k ) l a  I < to 

k -  P < 1, p > >  1 (5) 
p + 2  

while p is a large, odd number. 
By selecting large p, one can make k close to 1 so that (4) is almost 

identical to the classical condition (when k = 1) everywhere excluding a 
small neighborhood of the equilibrium point qj = 0, while at this point 

02R 
___) to at qj ---) 0 (6)  

aqi0qj 
OR 

Hence, the Lipschitz condition is violated; the friction force F,. = - -  

grows sharply at the equilibrium point, and then it gradually approaches its 
"classical" value. This effect can be interpreted as a mathematical representa- 
tion of a jump from static to kinetic friction, when the dissipation force does 
not vanish with the velocity. 

It appears that this "small" difference between the friction forces at k 
= 1 and k < 1 leads to fundamental changes in Newtonian dynamics. In 
order to demonstrate this, we will consider the relationship between the total 
energy E and the dissipation function R: 

dE OR 
= = - ( k  + 1)R (7) 

d---t 

Within the small neighborhood of an equilibrium state (where the poten- 
tial energy can be set to zero) the energy E and the dissipation function R 
have the order, respectively, 

E - -  q2, R - -  ~ /+ t  at E ---) 0 (8)  
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Obviously, this integral diverges in the classical case k --> 1, where to ----> oo. The 
motion described by (9) has a singular solution E -- 0 and a regular solution 

1 k ) t l  2/(1-k) 
E = AE~ l-k)r2 + ~A(1  - 

In a finite time the motion can reach equilibrium and switch to the 
singular solution E --- 0, and this switch is irreversible. 

As is well known from the dynamics of nonconservative systems, dissi- 
pative forces can destabilize the motion when they feed extemal energy into 
the system (the transmission of energy from laminar to turbulent flow in 
fluid dynamics, or from rotations to oscillations in dynamics of flexible 
systems). In terms of (9) this would mean that A > 0, and the equilibrium 
state E = 0 becomes a terminal repeller (Zak, 1992). 

If the initial condition is infinitely close to this repeller, the transient 
solution will escape it during a finite time period: 

~ aEo dE 2AE~l-k)/2 
to = A E  <k+t)r2 - (1 - k)A < oo 

dr 

while for a regular repeller, the time would be infinite. 
Expressing equation (9) in terms of velocity at i = 1, e l  = "O, 

i) = By  k, B = const > 0 (10) 

one arrives at the following solution: 

v = -+{[B(1 - k)t]P+2} 1/2 (11) 

As in the case of a terminal attractor, here the motion is also irreversible: 
the time-backward motion obtained by formal time inversion t --> - t  in 
equation (l l) is imaginary, since p is an odd number [see equation (5)]. 

But in addition, terminal repellers possess even more surprising charac- 
teristics: the solution (l l) becomes totally unpredictable. Indeed, two different 
motions described by the solution (1 l) are possible for "almost the same" 
( ~  = +e  ---> 0 or v0 = - ~  ----> 0 at t = --4 0) initial conditions. 

Thus, a terminal repeller represents a vanishingly short, but infinitely 
powerful "pulse of unpredictability" which is pumped into the system via 
terminal dissipative forces. Obviously, failure of  the uniqueness of the solution 
here results from the violation of the Lipschitz condition at v = 0. 

Hence, the non-Lipschitz forces OR/Oqi in equation (3) following from 
equations (4) and (5) change the most fundamental property of  Newtonian 
mechanics: its determinism. At the same time, these forces affect only the 
dissipation function, which is not prescribed by Newton's laws anyway. 
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Let us turn to stochastic processes which connect microscopic mechanics 
and thermodynamics. These processes are based upon some probabilistic 
arguments which cannot be formally derived from Newtonian mechanics. 
But can they be derived from a non-Lipschitzian version of Newtonian 
mechanics? Next, based on non-Lipschitz forces, we will introduce a purely 
mechanical model of a random walk-- the  simplest stochastic process--  
whose macroscopic interpretation leads to equation (1). 

2. M E C H A N I C A L  M O D E L  OF RANDOM W A L K  

A random walk is a stochastic process where changes occur only at 
fixed times; it represents the position at time tm of a particle taking a random 
"step" Xm independently of its previous steps. 

In order to implement this process based only upon Newton's laws, 
consider a rectilinear motion of a particle of unit mass driven by a non- 
Lipschitz force: 

m I-k 
iJ = v v  ~/3 sin ~ot, [v] sec2_ k v = const, (12) 

.r = v (13) 

where v and x are the particle velocity and position, respectively. 
Subject to the zero initial condition 

v = 0  at t = 0  (14) 

equation (10) has a singular solution 

v = 0 (15) 

and a regular solution 

v - \ 3 t o  sm ~ t (16) 

These two solutions coexist at t = 0, and this is possible because at this 
point the Lipschitz condition fails: 

03/J = kv~ -I sin totlt~0 ~ oo (17) 
~ t---~0 

Since 

~ at {v{4:0, t > O  (18) 
03v 
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the singular solution (15) is unstable, and the particle departs from rest 
following the solution (16). This solution has two (positive and negative) 
branches [since the power in (16) includes the square root], and each branch 
can be chosen with the same probability 1/2. It should be noticed that as a 
result of (17), the motion of  the particle can be initiated by infinitesimal 
disturbances (which never can occur when the Lipschitz condition holds: an 
infinitesimal initial disturbance cannot become finite in finite time). 

Strictly speaking, the solution (16) is valid only in the time interval 

2"rr 
0 <- t -< - -  (19) 

to 

and at t = 2"rr/to it coincides with the singular solution (15). 
For t > 2"rr/to, equation (15) becomes unstable, and the motion repeats 

itself to the accuracy of  the sign in equation (16). 
Hence, the particle velocity v performs oscillations with respect to its 

zero value in such a way that the positive and negative branches of the 
solution (16) alternate randomly after each period equal to 2"tr/to. 

Turning to equation (13), one obtains the distance between two adjacent 
equilibrium positions of  the particle: 

xi - x i - i  = -+ sin ~ t dt  = IM(3to)-Sav 3/2 = + h  (20), (21) 
-10 

Thus, the equilibrium positions of  the particle are 

xo = O, x~ = +_h, x2 = +-h +- h . . .  (22) 

while the signs randomly alternate with equal probability 112. 
Obviously, the particle performs an unrestricted symmetric random walk: 

after each time period 

2~r 
"r - (23) 

co 

it changes its value on --+h [see equation (22)]. 
The probability density u(x,  t) is governed by the following difference 

equation: 

1 1 
u(x,  t + "r) = ~ u (x  - h, t) + -~ u (x  + h, t) (24) 

while 

I~oo u(x ,  t) dx = 1 (25) 



lrreversibility in Thermodynamics 353 

3. P H E N O M E N O L O G I C A L  F O R C E  

Thus, as demonstrated above, a non-Lipschitz force 

4 \I/2 
F = m v v  u3 sin tot = _+~/ sm -~ t sin tot (26) 

applied to a particle of mass m leads to a classical random walk. 
It should be stressed that the governing equations (12), (13) are fully 

deterministic: they are based upon Newton's laws. The stochasticity here is 
generated by the alternating stability and instability effects due to failure of 
the Lipschitz conditions at equilibria. 

Let us analyze the properties of the force (28). 
First of all, the time average of this force is zero, 

P = 0 (27) 

since, as follows from equation (26), the signs + and - have equal probability. 
For the same reason, the ensemble average of F is also zero: 

(F) = 0 (28) 

The work done by the force (26) during one step is zero: 

+ v  sin 4 -~ t sin tot dt  = 0 (29) 
a = Jo F v d t  = _  \3to,/ J0 

Since the time average of the particle's kinetic energy can be expressed via 
the temperature, one obtains 

: = \3 to /  .,o sin6 ~ t at = ~ \3 to]  --m 

Then the only unspecified parameter v in equation (26) is expressed via 
the temperature: 

3to (8toKT~ '/3 
v = --~- \ 5-~--~-m ] (31) 

Here T is the absolute temperature and K is Boltzmann's constant. 
The parameter to- i is of the order of  the time period between collisions 

of the particle: 

1 1014 1 to -- - -- (32) 
T s e e  
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On the macroscale this is a very large number, and one can consider a 
continuous approximation assuming that 

~o ---> oo (33) 

Then, as follows from equations (20), (23), and (31), 

h 2 K T  
'r ---> 0, h ---> 0, and - -  ----> 0.19 - -  = 29  (34) 

'r m 

and therefore equation (24) can be replaced by the Fokker-Planck equation, 
i.e., by a one-dimensional version of equation (1). It is interesting to emphasize 
that the diffusion coefficient ~ is defined by the amplitude v of the non- 
Lipschitz force (26). 

Now the following question can be asked: does the force (26) exist in 
the sense that it can be detected by direct measurements on the microscopic 
level? Probably not. Indeed, on that level, this force is a resultant of a large 
number of collisions with other particles. However, on the stochastic level 
as an intermediate between the micro- and macrolevels, the phenomenological 
force (26) represents a part of the mathematical formalism, and it can be 
accepted. 

As follows from equation (26), on a microscale of time 

t -- 'r (35) 

the system (12), (13) is not conservative, and the motion is irreversible. 
Moreover, each time the particle arrives at an equilibrium point, it totally 
"forgets" its past. 

On the contrary, on a macroscale of time when 

t > >  "r (36) 

the system (12), (13) can be treated as conservative based upon equations 
(28) and (29), and therefore it is fully reversible. This means that the particle 
whose motion is described by equations (12) and (13) can return to its original 
position passing through all of its previous steps backward; however, the 
probability of such an event will be vanishingly small (but not zero!), or, in 
other words, the period of time to during which this event can occur is very 
large (but finite!): 

"r < <  to < oo (37) 

4. NON-LIPSCHITZ M A C R O S C O P I C  EFFECTS 

Turning back to the macroscopic equation (1), one can notice its inconsis- 
tency with the results discussed in the last section, and in particular with the 
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condition (37). Indeed, equation (1) does not have any time scale which 
would allow one to implement the condition (37): the time of approaching 
a thermodynamic equilibrium is unbounded, and therefore (1) excludes any 
reversible solutions even if to --~ oo. The only logical way out of this situation 
is to introduce a time scale into equation (1) so that the time of approaching 
an equilibrium would be finite. Then one can argue that this time is not large 
enough to include reversible solutions. In order to do that, let us turn to 
equation (1), and, for the sake of concreteness, treat it as an equation for 
thermal conductivity. Then the relationship between the heat flow q and the 
temperature u can be sought in the following form: 

q = q(Vu) (38) 

It should be emphasized that the function (38) is not prescribed by any 
macroscopic laws, and therefore it must be found from experiments. The 
basic mathematical assumption about equation (38) is its expandability in 
Taylor series. Then, for small gradients 

q = - x V u  + "'" (39) 

where • is the thermal conductivity, and this leads to equation (1). But even 
if higher order gradients of u are taken into account, the time of approaching 
equilibria would still remain unbounded. 

However, there is another possibility of representing equation (38) if 
one relaxes the Lipschitz condition at Vu = 0. Indeed, instead of (39) one 
can write 

(Vu] 
= - V u  + " ' "  q 

X \  ~-o / 
(40) 

where k has the form (5), and to has the dimensionality of Vu, i.e., 

[t0] = [Vu] (41) 

Equation (40) is different from equation (39) only within an infinitesimally 
small neighborhood of the equilibrium states where 

Vu ---> 0 (42) 

Otherwise 

X7U/k-I 

t0 / 
~- 1 (43 )  
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One can verify that the Lipschitz condition for the function (40) at Vu ---) 0 
is violated: 

OO-~u - + ~  at V u ~ 0  (44) 

The mathematical consequences of this property will be discussed below. 
Turning to equation (40), one can write the following equation instead 

of (1): 

Ou : ~b 0 [(ou~kl  ~ -- • -- const > 0  (45) 
Ot ~x L\Ox] J'  - - ~  

where • c, and p are the coefficients of  thermal conductivity, specific heat, and 
density, respectively. Equation (45) reduces to the classical diffusion equation: 

Ou OZu 
- ~ -  ( 4 6 )  

Ot Ox 2 

i f k  = 1. 
Let us compare the solutions to equations (45) and (46) subject to the 

same initial and boundary conditions. Introducing the function 

(Ou~ k-'  
0 = f \O--xx] dx (47) 

one obtains 

d--; = tax ]  axat dx = (k + 1)5~ t ax]  ~ L t a x j J  

Assuming separation of the variables 

u(x, t) = ul(t)u2(x) (48) 

one arrives at the following ordinary differential equation: 

at = - A u  k (49) 

where 

For k = 

F o r k <  

I (.u 7 r rou71, : A = ~ \ a x }  ax 2 L\ax) J const 

1 [see equation (46)] 

ul = \lie -At, u ] --+ 0 at t ----) 

1 [see equation (45)] 

(50) 

(51) 
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ut = [(t~t) 1-k - A(1 - k)t] tin-k) (52) 

Here 

~1 = u l  at t = 0  (53) 

Thus, as follows from equation (51), the solution to the classical equation 
(46) approaches the equilibrium state in infinite time, while the solution to 
the "scaled" equation (45) approaches the same equilibrium state in a finite 
time [see equation (52)] 

(/~1) I -k  
t 0 - ( l _ k ) A  < ~ 1 7 6  if k <  1 (54) 

One can notice that although equation (46) can be obtained from equation 
(45) as a limit at k ---) 1, the solution (51) cannot be obtained as the same 
limit of equation (52). However, the quantitative difference between these 
solutions can be detected only within a very small neighborhood of the 
equilibrium when 

0~ _ eo (55) 

The period to in equation (54) represents the macroscopic time scale 

0 < "r < <  to < <  too < oo (56) 

where 

and 

too--~n! (57) 

Uo 
n (58) 

Here "r ~ 10-~o is the relaxation time, Uo/% is a macroscopic representa- 
tive length, and (~br) la is of the order of the distance between two adja- 
cent collisions. 

Two new constants, k and %, in equation (45) can be found from a 
simple experiment: turning to equation (54) and recording the time to of 
approaching the State of equilibrium for different initial conditions, one can 
calculate k and A, and therefore % [see equations (45) and (50)]. 

Equation (45) possesses many other interesting properties such as non- 
uniqueness and non-Lipschitz instability with respect to infinitesimal distur- 
bances at equilibrium. These properties and their relevance to the onset of 
turbulence [in the case of the fluid dynamic interpretation of equation (45)] 
are discussed in Zak (1992). 
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5. MICROSCOPIC VIEW 

In the previous sections, the problem of irreversibility in thermodynamics 
was discussed on the stochastic and macroscopic levels of description. This 
and the next sections will be devoted to the same problem, but from the 
viewpoint of the microscopic level of description. On that level, the micro- 
scopic state of a system may be specified in terms of positions and momenta 
of a constituent set of particles: the atoms and molecules. Within the Born- 
Oppenheimer approximation, it is possible to express the Hamiltonian (or 
the Lagrangian) of a system as a function of nuclear variables, the (rapid) 
motions of electrons having been averaged out. Making the additional approx- 
imation that a classical description is adequate, one can write the Lagrange 
equations which govern the microscopic motion of the system: 

d 0L 0L 
- 0 ,  i =  1 ,2  . . . . .  n, L =  W + I I  (59) 

dt O(li Oqi 

Here qi and q,. are the generalized coordinates and velocities characterizing 
the system, W is the kinetic energy including translational components (as 
well as rotational components if polyatomic molecules are considered), and 
I-I is the potential energy representing the effects of an external field (includ- 
ing, for example, the container walls), the particle interactions, and elastic 
collisions. 

All the solutions to equation (59) are fully deterministic and reversible 
if the initial conditions are known exactly. But since the last requirement is 
physically unrealistic, small errors in initial conditions will grow exponen- 
tially in the case of instability of equation (59). (Such an instability may have 
the same origin as the instability in the famous three-body problem.) As a 
result, the solution to equation (59) acquires stochastic features, i.e., becomes 
chaotic, and therefore it loses its determinism and reversibility. The connection 
between chaotic instability and the problem of irreversibility in thermodynam- 
ics was stressed by Progogine (1980): "The structure of the equations of 
motion with randomness on the microscopic level then emerges as irreversibil- 
ity on the macroscopic level." Based upon the same ideas as those introduced 
by Prigogine, we will propose a different mathematical framework for their 
implementation. This framework exploits the stabilization principle intro- 
duced and discussed in Zak (1994). As will be shown below, this principle 
imposes some additional constraints upon the motion, and that makes the 
solutions to (59) irreversible. 

6. ORBITAL INSTABILITY IN HAMILTONIAN MECHANICS 

Most dynamical processes are so complex that a universal theory which 
would capture all the details during all time periods is unthinkable. That is 
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why the art of mathematical modeling is to extract only the fundamental 
aspects of the process and to neglect its insignificant features, without losing 
the core of information. But "insignificant features" is not a simple concept. 
In many cases even vanishingly small forces can cause large changes in the 
dynamical system parameters, and such situations are intuitively associated 
with the concept of instability. Obviously the destabilizing forces cannot be 
considered as "insignificant features," and therefore they cannot be ignored. 
But since it may not be possible for us to distinguish them at the very 
beginning, there is no way to incorporate them into the model. This simply 
means that the model is not adequate for quantitative description of the 
corresponding dynamical process: it must be changed or modified. 

However, the instability yields important qualitative information: it 
shows the boundaries of applicability of the original model. 

We will distinguish short- and long-term instabilities. A short-term insta- 
bility occurs when the system has alternative stable states. For dissipative 
systems such states can be represented by static or periodic attractors. At the 
very beginning of the postinstability transition period, the unstable motion 
cannot be traced quantitatively, but it becomes more and more deterministic as 
it approaches the attractor. Hence, a short-term instability does not necessarily 
require a modification of the model. Usually this type of instability is associ- 
ated with a bounded deviation of position coordinates whose changes affect 
the energy of the system. Indeed, if the growth of a position coordinate 
persists, the energy of the system would become unbounded. 

Long-term instability occurs when the system does not have an alterna- 
tive stable state. Such a type of instability can be associated only with 
ignorable coordinates since these coordinates do not affect the energy of the 
system. Long-term instability is the main cause of chaos. It can occur in the 
form of orbital instability, Hadamard's instability, Reynolds instability, etc. 
We will illustrate the concept of long-term instability by orbital instability. 

First we recall that a coordinate q,~ is called ignorable if it does not enter 
the Lagrangian function L and the corresponding nonconservative generalized 
force Q,~ is zero: 

OL 
- 0 ,  a , ,  = 0 ( 6 0 )  

0q~ 

Therefore, 

OL 
- P,~ = const (61) 

i.e., the generalized ignorable impulse P,~ is constant. 
As follows from equation (61), there exist such states of dynamical 

systems (called stationary motions) that all the position (i.e., nonignorable) 
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coordinates retain a constant value while the ignorable coordinates vary in 
accordance with a linear law. For example, a regular precession of a heavy 
symmetric gyroscope is a stationary motion characterized by 

O = const, ~ = const, ~b = const (62) 

where the angle of precession t~ and the angle of pure rotation ~ are ignorable 
coordinates, while the angle of nutation O - - t h e  angle formed by the axis of 
the gyroscope and the vertical--is a position coordinate. 

Obviously, stationary motions are not stable with respect to ignorable 
velocities: a small change in (/~ at t = 0 yields, as time progresses, an 
arbitrarily large change in the ignorable coordinates themselves. However, 
since this change increases linearly (but not exponentially), the motion is 
still considered as predictable. In particular, the Lyapunov exponents for 
stationary motions are zero: 

(11 d(O)t tr = lim | In = 0 (63) 
d(O)--~O.t-~ \ t / d(O) 

However, in case of nonstationary motions, the ignorable coordinate can 
exhibit more sophisticated behavior. In order to demonstrate this, let us 
consider an inertial motion of a particle M of  unit mass on a smooth pseudo- 
sphere S having a constant negative curvature: 

Go = const < 0 (64) 

Remembering that trajectories of inertial motions must be geodesics of S, 
we will compare two different trajectories assuming that initially they are 
parallel and that the distance between them e0 is very small. 

As shown in differential geometry, the distance between such geodesics 
will exponentially increase: 

e = % exp[(--G0)l/2t], Go < 0 (65) 

Hence, no matter how small the initial distance %, the current distance e 
tends to infinity. 

Let us assume now that the accuracy to which the initial conditions are 
known is characterized by L. This means that any two trajectories cannot be 
distinguished if the distance between them is less than L, i.e., if 

�9 < L (66)  

The period during which the inequality (66) holds is of the order 

1 L 
At In --  (67) 

I(-a0)l ':l  �9 
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However, for 

t > >  At (68) 

these two trajectories diverge such that they can be distinguished and must 
be considered as two different trajectories. Moreover, the distance between 
them tends to infinity even if e0 is small (but not infinitesimal). That is why 
the motion, once recorded, cannot be reproduced again (unless the initial 
conditions are known exactly), and consequently, it acquires stochastic fea- 
tures. The Lyapunov exponent for this motion is positive and constant: 

cr = im ( 1 / I n  
e x p [ -  Go) l/2t] Eo 

t-~la(o)~o\ t] ~0 = ( -G0)  1/2 = const > 0 (69) 

Let us introduce a system of coordinates at the surface S: the coordinate q~ 
along the geodesic meridians, and the coordinate q2 along the parallels. In 
differential geometry such a system is called semigeodesic. The square of 
the distance between adjacent point on the pseudosphere is 

ds 2 = gll dq~ + 2g12 dql dq2 + g2z dq~ (70) 

where 

1 
gtl = 1, g12 = 0, g22 = -G-- o exp[--2(--G)t/2qt] (71) 

The Lagrangian for the inertial motion of the particle M on the pseudosphere 
is expressed via the coordinates and their temporal derivatives as 

1 
L = g i j q i ( ] j  = t~ 2 - ~00 {exp[--2(--G)l/2qL]}~r (72) 

and, consequently, 

OL 
- 0 (73)  

0q2 

while 

OL 
- -  :/: 0 i f  q2 4 : 0  (74)  
c3qn 

Hence, qn and q2 play the roles of position and ignorable coordinates, 
respectively. 

Therefore, an inertial motion of a particle on a pseudosphere is stable 
with respect to the position coordinate q~, but it is unstable with respect to 
the ignorable coordinate. However, in contrast to the stationary motions 
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considered above, here the instability is characterized by exponential growth 
of the ignorable coordinate, and that is why the motion becomes unpredictable. 
It can be shown that such a motion becomes stochastic (Arnold, 1988). 

Instability with respect to ignorable coordinates can be associated with 
orbital instability. Indeed, turning to the last example, one can represent the 
particle velocity v as the product 

v = Ivl-r 

In the course of the instability, the velocity magnitude Iv I and conse- 
quently the total energy remain unchanged, while all the changes affect only 
1", i.e., the direction of motion. In other words, orbital instability leads to 
redistribution of the total energy between the coordinates, and it is character- 
ized by positive Lyapunov exponents. 

The results described above were related to the inertial motions of a 
particle on a smooth surface. However, they can be easily generalized to 
motions of any finite-degree-of-freedom mechanical system by using the 
concept of configuration space. Indeed, if the mechanical system has N 
generalized coordinates q~ (i = 1, 2 . . . . .  N) and is characterized by the 
kinetic energy 

W = ct;j#",~J (75) 

then the configuration space can be introduced as an N-dimensional space 
with the following metric tensor: 

gij = aij (76) 

while the motion of the system is represented by the motion of the unit-mass 
particle in this configuration space. 

In order to continue the analogy to the motion of a particle on a surface 
in actual space, we will consider only two-dimensional subspaces of the N- 
dimensional configuration space, without loss of generality. Indeed, a motion 
which is instable in any such subspace has to be qualified as unstable in the 
entire configuration space. 

Now the Gaussian curvature of a two-dimensional configuration sub- 
space (ql, q2) follows from the Gauss formula 

G -  1 [. c32a12 1 c32all I 02a22 ~ 
alia22 -- a212 ~Oqlcqq 2 20qEOq 2 2 OqlOq 1} 

~t 8 ~ 13 - Fj2F12av~ - FllF22a~,13 (77) 

coefficients Ft~k are expressed via the Christoffel where the connection 
symbols: 
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while 

1 . [c3as, c3akp Oask 
= a'P[-----~ "~, + (78) 

\or  oq, oq p] 

f a  if c ~ r  
a~a~v ~ ' ~  (79) 

= a v = l "  i f  o r =  

Thus, the Gaussian curvature of these subspaces depends only on the coeffi- 
cients aij, i.e., it is fully determined by the kinematic structure of the system 
[see equation (75)]. In the case of inertial motions, the trajectories of the 
representative particle must be geodesics of the configuration space. Indeed, 
as follows from (74), 

dr dr 
dt ds 

= 0  if / ) = 0 ,  and 141 = = c o n s t  4 : 0  

where s is the arc coordinate along the particle trajectory: 

ds  = a i j d q i d q  j 

But then 

(80) 

(81) 

dr 
- -  = 0 (82) 
ds 

which is the condition that the trajectory is geodesic. 
If the Gaussian curvature (77) which is uniquely defined by the parame- 

ters of the dynamical system a,-j is negative 

G < 0 (83) 

then the trajectories of inertial motions of the system that originated at close, 
but different points of the configuration space diverge exponentially from 
each other, and the motion becomes unpredictable and stochastic. Some 
examples of orbital instability in inertial, potential, and general motions as 
well as other types of instability are discussed by Zak (1994). 

Returning to the motion of the particle M on a smooth pseudosphere, 
let us depart from inertial motions and introduce a force F acting on this 
particle. For noninertial motions (F 4: 0) the trajectories of the particle 
will not be geodesics, while the rate of their deviation from geodesics is 
characterized by the geodesic curvature • It is obvious that this curvature 
must depend on the forces F: 

X = X(F) (84) 
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Synge (1926) has shown that if the force F is potential, 

F = - V I I  (85) 

where 1-I is the potential energy, then the condition (83) is replaced by 

( O2I-I --k 0I-I~ i " 1 Go+ax2+-~k'Oqicg-----qj l ' i j - ~ ) n n . l < O ;  i , j =  1,2 (86) 

Here F/kj are defined by equation (78), and n i are the contravariant components 
of the unit normal n to the trajectory. 

The geodesic curvature X in (86) can be expressed via the potential 
force F:  

F . n  V I I . n  
- -  - ( 8 7 )  

•  2W 2W 

It follows from (86) and (87) that the condition (86) reduces to (83) if F = 0. 
Suppose, for example, that the elastic force 

F = -ot2• ,  Ot 2 = const (88) 

proportional to the normal deviation e from the geodesic trajectory is applied 
to the particle M moving on the smooth pseudosphere. If the initial velocity is 
directed along one of the meridians (which are all geodesics), the unperturbed 
motion will be inertial, and its trajectory will coincide with this meridian 
since there e = 0, and therefore F = 0. In order to verify the orbital stability 
of this motion, let us turn to the criterion (38). Since 

OH 
- -  = X = 0 and 0 4  Fk 0 (89) 

for the unperturbed motion, one obtains the condition for orbital stability: 

where 

~2 
G 0 +  > 0 ,  i.e., ot 2 < - 2 W G ,  G < 0  (90a) 

2W 

1 
W = ~ mv  2 (90b) 

As in the case of inertial motions, the inequality 

ot 2 < - 2 W G o  

leads to unpredictable (stochastic) motions which are characterized by 

(91) 
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Ot..~)i/2 
cr=  G o -  = c o n s t > O  (92) 

For pure inertial motions (or = 0), equation (92) reduces to equation (64). 
Following discovery of chaos, the stochastic motions which are generated 

by the instability and are characterized by positive Lyapunov exponents are 
called chaotic. Hence, the inequalities (83) and (86) can be associated with 
criteria of chaos: if the left-hand part in (86) is bounded away from zero by 
a negative number - B  in all the configuration space where the motion can 
occur, then the motion will be chaotic, and its positive Lyapunov exponent 
will be 

o" ~ B 2 (93) 

Unfortunately, this criterion is too strong to be of practical significance: it 
is sufficient, but not necessary. Indeed, this criterion assumes that not only 
global, but also the local Lyapunov exponents are positive at any point of 
the configuration space. At the same time, for many chaotic motions, local 
Lyapunov exponents in certain domains of the configuration space are all 
negative or zero, although some of the global exponents are still positive. 

Following Synge (1926), the results for the orbital instability of inertial 
and potential motions for a system of material points can be generalized to 
arbitrary motions (Zak, 1994). 

Thus, there are some domains of dynamical parameters where the motion 
cannot be predicted because of instability of the solutions to the corresponding 
governing equations. How can this be interpreted? Does this mean that New- 
ton's laws are not adequate? Or is there something wrong with our mathemati- 
cal models? In order to answer these questions, we will discuss some general 
aspects of the concept of instability, and in particular the degree to which it 
is an invariant of motion. We will demonstrate that instability is an attribute 
of a mathematical model rather than a physical phenomenon, that it depends 
upon the frame of reference, upon the class of functions in which the motion 
is described, and upon the way in which the distances between the basic and 
perturbed solutions are defined. 

Let us turn to orbital instability discussed above. The metric of configura- 
tion space where the finite-degree-of-freedom dynamical system with N gener- 
alized coordinates qi (i = 1, 2 . . . . .  N) is represented by a unit-mass particle 
was defined by (75) and (76). Now there are at least two possible ways to 
define the distance between the basic and disturbed trajectories. Following 
Synge (1926), we will consider the distance in kinematic and in kinematico- 
static senses. In the first case the corresponding points on the trajectories are 
those for which time t has the same value. In the second case the correspon- 
dence between points on the basic trajectory C and a disturbed trajectory C* 
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is established by the condition that P (a point on C) should be the base of 
the geodesic perpendicular let fall from P* (a point on C*) on C, i.e., 
here every point of the disturbed curve is adjacent to the undisturbed curve 
(regardless of the position of the moving particle at the instant t). As shown 
by Synge, both definitions of stability are invariant with respect to coordinate 
transformations, and in both cases the stability implies that the corresponding 
distance between the curves C and C* remains permanently small. 

It is obvious that stability in the kinematic sense implies stability in the 
kinematicostatic sense, but the converse is not true. Indeed, consider the 
motion of a particle of unit mass on a plane under the influence of a force 
system derivable from a potential 

II = - x  + l y 2  (94) 

Writing the equations of motion and solving them, we get 

1 
x = ~ t 2 + A t + B  

y = c sin(t + r 

(95) 

(96) 

where A, B, C, and D are constants of integration. 
Let the undisturbed motion be 

1 
x = ~ t 2 + t (97) 

y = 0 (98) 

The motion is clearly unstable in the kinematic sense. However, from the 
viewpoint of stability in the kinematicostatic sense, the distance between 
corresponding points is 

PP* = y = C sin(t + D) (99) 

remains permanently small if C is small. Hence, there is stability in the 
kinematicostatic sense. 

Thus, the same motion can be stable in one sense and unstable in another, 
depending upon the way in which the distance between the trajectories is 
defined. 

It should be noticed that in both cases the metric of configuration space 
was the same [see equations (75) and (76)]. However, as shown by Synge 
(1926), for conservative systems, one can introduce a configuration space 
with another metric, 
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g,,~ = ( E -  Fl)et,,,,, (100) 

where ct,,~ are expressed by (75), and E is the total energy. 
The system of motion trajectories here consists of all the geodesics of 

the manifold. The correspondence between points on the trajectories is fixed 
by the condition that the arc O'P* should be equal to the arc OP, where O 
and O* are arbitrarily selected origins on the basic trajectory and any disturbed 
one, respectively. 

As shown by Synge, the problem of stability here (which is called 
stability in the action sense) is that of the convergence of geodesics in 
Riemannian space. If two geodesics pass through adjacent points in nearly 
parallel directions, the distance between points on the geodesics equidistant 
from the respective initial points is either permanently small or not. If not, 
there is instability. It appears that stability in the action sense may not be 
equivalent to stability in the kinematicostatic sense for distances which change 
the total energy E. 

Turning to the example, equation (94), let us take the initial point O at 
the origin of coordinates and the initial point O* on the y axis. Then, since 
the disturbance is infinitesimal, the (action) distance between corresponding 
points is 

P* = (E - II)U2y = 2-u2(t + 1)C sin(t + D) ( l o 0  

Hence, the motion is unstable in the action sense. 
Dynamical instability depends not only upon the metric in which the 

distances between trajectories are defined, but also upon the frame of reference 
in which the motion is described. 

For instance, as noticed by Arnold (1988), an inviscid stationary flow 
with a smooth velocity field (in Eulerian representation) 

v x = A s i n z +  C c o s y  

vy = B sin x + A cos z 

v z = C sin y + B cos x ( t O2) 

has chaotic trajectories x(t), y(t), z(t) of fluid particles (Lagrangian turbulence) 
due to negative curvature of the configuration space, which is obtained as a 
finite-dimensional approximation of a continuum. Thus, the same motion is 
stable in the Eulerian representation, but is unstable in the Lagrangian one. 

In order to demonstrate the instability dependence upon the class of 
functions in which the motion is considered, start with the example of a 
vertical, ideally flexible, inextensible string with a free lower end suspended 
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in a gravity field. The governing equation for small transverse motion of the 
string is 

02x T 02x 
0-P- + p ~,1, 2 - 0 (103) 

It has the following characteristic speeds of transverse wave propagation: 

~ =  _+(T) ~2 
(104) 

Since the tension of the string T vanishes at the free end, 

T = 0  at S = l  (105) 

where l is the length of the string, the characteristic speeds (104) vanish, 
too, at S = l, and therefore equation (103) degenerates from hyperbolic into 
parabolic type at the very end of the string. 

Suppose that an isolated transverse wave of small amplitude is generated 
at the point of suspension. The speed of propagation of the leading front of 
the transverse wave will be smaller than the speed of the trailing front because 
the tension decreases from the point of suspension to the free end. Hence, 
the length of the above wave will be decreasing and in some cases will tend 
to zero. Then, according to the law of conservation of energy, the specific 
kinetic energy per unit of length will tend to infinity, producing a snap (snap 
of a whip). 

As shown in Zak (1994), a formal mathematical solution to equation 
(103) is stable in the open interval (which does not include the end) 

O < _ x < l  

but it is unstable in the closed interval 

O<_x<.l 

However, the stable solution does not describe the snap of the whip, while 
the unstable solution does! 

Thus, the properties of solutions to differential equations such as exis- 
tence, uniqueness, and stability have a mathematical meaning only if they 
are referred to a certain class of functions. Most of the results concerning 
the properties of solutions to differential equations require differentiability 
(up to a certain order) of the functions describing the solutions. However, 
the mathematical restrictions imposed upon the class of functions which 
guarantee the existence of a unique and stable solution do not necessarily 
lead to the best representation of the corresponding physical phenomenon. 
Indeed, turning again to equation (103), one notices that the unique and stable 
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solution does not describe a cumulative effect (a snap of a whip) which is 
well pronounced in experiments. At the same time, an unstable solution in 
a closed interval gives a qualitative description of this effect. Hence, purely 
mathematical restrictions imposed upon the solutions are not always consis- 
tent; the long-term instability in classical dynamics discussed above can be 
interpreted as a discrepancy between these mathematical restrictions and 
physical reality. This means that unpredictability in classical dynamics is the 
price to be paid for mathematical "convenience" in dealing with dynamical 
models. Therefore, the concept of unpredictability in dynamics should be 
stated as unpredictability in a selected class of functions, or in a selected 
metric of configuration space, or in a selected frame of reference. 

In this connection one should notice that the governing equations of 
classical dynamics, and in particular of continuous systems, in addition to 
Newton's laws, are based upon a purely mathematical assumption that all 
the functions describing the system motions must be differentiable "as many 
times as necessary." But since this assumption is not always consistent with 
the physical nature of motions, such an inconsistency leads to instability (in 
the class of smooth functions) of the governing equations (Zak, 1994). 

Hence, the occurrence of chaos or turbulence in the description of 
mechanical motions means only that these motions cannot be properly 
described by smooth functions if the scale of observations is limited. These 
arguments can be linked to GOdel's (1931) incompleteness theorem and 
Richardson's (1968) proof that the theory of elementary functions in classical 
analysis is undecidable. 

Thus, since instability is not an invariant of motions, the following 
question can be posed: is it possible to find such a new (enlarged) class of 
functions, or a new metric of configuration space, or a new frame of reference 
in order to eliminate instability? Actually such a possibility would lead to 
different representative parameters describing the same motion in such a 
way that small uncertainties in external forces cause small changes of these 
parameters. For example, in turbulent and chaotic motions, mean velocities, 
Reynolds stresses, and power spectra represent "stable" parameters, although 
classical governing equations neither are explicitly expressed via these param- 
eters nor uniquely define them. 

The first step toward enlarging the class of functions for modeling 
turbulence was made by Reynolds (1895), who decomposed the velocity field 
into mean and pulsating components and actually introduced a multivalued 
velocity field. However, this decomposition brought new unknowns without 
additional governing equations, and that created a "closure" problem. In Zak 
(1994) it is shown that the Reynolds equations can be obtained by referring 
the Navier-Stokes equations to a rapidly oscillating frame of reference, while 
the Reynolds stresses represent the contribution of inertia forces. From this 
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viewpoint the "closure" has the same status as the "proof" of Euclid's parallel 
postulate, since the motion of the frame of reference can be chosen arbitrarily. 
In other words, the "closure" of the Reynolds equations represents a case of 
undecidability in classical mechanics. However, based upon the interpretation 
of the Reynolds stresses as inertia forces, it is reasonable to choose the motion 
of the frame of reference such that the inertia forces eliminate the original 
instability. In other words, the enlarged class of functions should be selected 
such that the solution to the original problem in that class of functions will 
not possess an exponential sensitivity to changes in initial conditions. This 
stabilization principle has been formulated and applied to chaotic and turbu- 
lent motions in Zak (1994). As shown there, the motions which are chaotic 
(or turbulent) in the original frame of reference can be represented as a sum 
of the "mean" motion and rapid fluctuations, while both components are 
uniquely defined. It is worth emphasizing that the amplitude of the velocity 
fluctuation is proportional to the degree of the original instability, and there- 
fore the rapid fluctuations can be associated with the measure of the uncer- 
tainty in the description of the motion. It should be noticed that both "mean" 
and "fluctuation" components representing the originally chaotic motion are 
stable, i.e., they are not sensitive to changes of initial conditions, and are 
fully reproducible. 

7. CHAOS IN RAPIDLY OSCILLATING FRAME OF 
REFERENCE 

Formally, chaos is caused by the instability of trajectories (orbital insta- 
bility). If the velocity of a particle is decomposed as v -- v'r ('r is the 
unit vector along the trajectory), then orbital instabilities are identified with 
instabilities of-r. In other words, the orbital instability leads only to redistribu- 
tions of the energy between different coordinates, and it can be associated 
with an ignorable variable which does not contribute to kinetic energy. There- 
fore, an unlimited growth of this variable does not violate the boundedness 
of energy. That is why the orbital instability may not lead to classical attractors 
and chaos can emerge. In dissipative systems the persisting instability can 
be "balanced" by dissipative forces in the sense that exponentially diverging 
trajectories are locked within a contracting phase-space volume, and this 
leads to chaotic attractors. In both conservative and dissipative systems, 
exponential divergence of trajectories within a constant or a contracting 
volume causes their mixing, so that the motion cannot be traced unless 
the initial conditions are known to infinite accuracy. This means that in 
configuration space, two different trajectories which may be initially indistin- 
guishable (because of the finite scale of observation) diverge exponentially, so 
that a "real" trajectory can fill up all the spacing between these exponentially 
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diverging trajectories. In other words, in the domain of exponential instability, 
each trajectory "multiplies," and therefore the predicted trajectory becomes 
multivalued, so the velocities can be considered as random variables: 

(1 i = ( l i ( t ,  ~), 0 --< e --< 1 (106) 

where q and e for a fixed t are a function and a point on a probability space, 
respectively. Let us refer the original equations of motion to a noninertial 
frame of reference which rapidly oscillates with respect to the original inertial 
frame of reference. Then the absolute velocity q can be decomposed into the 
relative velocity q~ and the transport velocity t~2 = 2t~2(o): 

~/ = ql "{- 2q2(o) COS tot, to --> oo (107) 

where q~ and q2(o) are "slow" functions of time in the sense that 

to > >  1/'r (108) 

where "r is the time scale upon which the changes ql and qz(o) can be ignored. 
Then for the mean ~/ 

fo >" 1 q ~ q~ since q2(o) cos tot  d t  ~- - -  q2(o) sin tot ~ 0 if to --~ oo 
~0 

(109) 

In other words, a rapidly oscillating velocity practically does not change 
the displacements. 

Taking into account that 
Ca) ~2"rr/to 

- -  gh d t  ~-- ( h  
27r ~o 

o 2wh~ 82(0) sin to t  d t  = 0 

o 2~/~'/12co) cos to t  d t  = 0 

~ 2~/to 1 
422(o) cos 2 to t  d t  = ~ q2(o) (1 10) 

./0 

one can transform the system 

X i = a j x  j + b jmx iX  m, i = 1, 2 . . . . .  n (111) 

into the form 

.r i = ajYcJ + b'jzYCJYc ' '  + bj , , ,xJx  " ,  i = l ,  2 . . . . .  n (112) 
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where .~; and x i x  j are means and double correlations of x / as random vari- 
ables, respectively�9 

Actually the transition from (111) to (112) is identical to the Reynolds 
transformation: indeed, applied to the Navier-Stokes equations, it leads to 
the Reynolds equations, and therefore the last term in (112) (which is a 
contribution of inertial forces due to fast oscillations of the frame of reference) 
can be identified with the Reynolds stresses. From a mathematical viewpoint, 
this transformation is interpretable as an enlarging of the class of smooth 
functions to multivalued ones. Indeed, as follows from (108), for any arbi- 
trarily small interval At, there always exists such a large frequency to > 
At/2~r  that within this interval the velocity q runs through all its values, and 
actually the velocity field becomes multivalued. 

The most significant advantage of the Reynolds-type equations (112) is 
that they are explicitly expressed via the physically reproducible parameters 
~, x~x j which describe, for instance, a mean velocity profile in turbulent 
motions, or a power spectrum of chaotic attractors�9 However, as a price for 
that, these equations require closure, since the number of unknowns in them 
is larger than the number of equations. Actually the closure problem has 
existed for almost 100 years since the Reynolds equations were derived. In 
the next sections, based upon the stabilization principle introduced in Zak 
(1994), this problem will be discussed. 

Some comments should be made concerning the Reynolds transforma- 
tion of the Lagrange equation (59). Their explicit form 

Oil 
•r + Frmndlmg;l n = O r, Qr  _ (113) aq r 

in general is nonlinear with respect to both the coordinates qr and the velocities 
4 r, since 

F~,, = F~,,(q~ . . . . .  q,), II = l-l(q t . . . . .  qn) (114) 

However, as follows from equations (107), the fluctuations of the coordi- 
nates are much smaller than the fluctuations of the velocities: 

1 
q2(0) -- to qz(o), to --~ ~ (115) 

and therefore they can be ignored�9 
Consequently, after the Reynolds transformation, equation (113) is given 

in the form 

~ + F~,,~r = Q~ + Q~';), Q[;) = F~,,//"//" (116) 
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where ~" = q~ is the mean value of the coordinate q~, and 4 " ~  is the averaged 
product of the fluctuation velocities, and the Reynolds force Q~i) represents the 
contribution of inertia caused by the transport motion of the frame of reference. 

Actually the transformation from (113) to (116) can be based upon the 
axiomatically introduced Reynolds conditions 

a + b = a + b, ab = ab + a 'b '  t if a = a + a ,  etc. 
(117) 

In the particular case 

F ~  -- 0 (118) 

i.e., when the configuration space is Euclidean, 

Q~,~ -- 0 (119) 

and the nonlinearities of the coordinates can no longer be ignored. Represent- 
ing Qr in the form 

Qr(q + q ' )  = Qr(q) + Q~o, Q~i) = [Q~(# + q') - Qr(#)] (120) 

one obtains instead of equation (116) 

jr  = Qr(#) + Q[i) (121) 

8. STABILIZATION PRINCIPLE 

The main purpose of the transition from the form (11 l) to the form 
(112) is to change the representative parameters describing the motion in 
such a way that they become physically reproducible, i.e., mathematically 
stable. Hence, the next logical step is to utilize the extra variables, i.e., the 
Reynolds stresses, for elimination of the original instability. In other words, 
one can seek such additional relationships 

q~(xix j, .~i, gj . . . .  ) = 0 (122) 

which make the system (112), (122) stable. Obviously, in this way of posing 
the problem, the solution to the system (112), (122) is not unique: the system 
can be overstabilized to any degree, while each of these stable solutions will 
have physical meaning. But for the best solution one has to minimize the 
uncertainties represented by the Reynolds stresses, and therefore the system 
should be brought to the boundary of instability. Since the orbital instability 
causing chaos is characterized by positive Lyapunov exponents h~-, one should 
select the Reynolds stresses in (112) such that 

X, .+ = 0 (123) 
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while keeping the rest of the Lyapunov exponents without changes: 

X0 = ~0, h~- = h~- (124) 

where h ~ hi-, h,:-, and h~- are nonpositive Lyapunov exponents of the system 
(112), (122) and equation (111), respectively. 

Clearly, those components of the Reynolds stresses which do not affect 
the Lyapunov exponents must be omitted. In general, the solution to equations 
(112), (123), (124) will eventually approach a set of periodic attractors which 
"replaces" the chaotic attractor of equation (111). However, one should con- 
sider these sets not as an approximation to the original chaotic attractor, but 
rather as a different way of mathematical representation of the same physical 
phenomenon. This representation is provided by a new frame of reference 
whose oscillations are coupled with the dynamical variables such that the 
inertia forces (i.e., the Reynolds stresses) generated by transport motion 
eliminate the original instability. In other words, the new frame of reference 
provides the best "view" of the motion. 

The decomposition (112) applied to equation (111) generates not only 
pair correlations x'xJ, but also correlations of higher order, such as triple 
correlations x~xJx k, quadruple correlations x~xJxkx% etc. Indeed, multiplying 
equation (111) by x k and averaging and combining the results, one obtains 
the governing equation for the pair correlations x/x k, 

Xz'xk = a~xJx k + akxJx i -4- bjm(xkxJx m "4" x k x J x  m "3 L xkxmx j )  

+ bjm(X~XJX ~ + x~xJ~ m + x~xm~ j )  (125) 

which contains nine additional triple correlations x~xJx k. 
Now the application of the stabilization principle will lead to the system 

(112), (125) which will define Yc/, x/x j and those components of triple correla- 
tions x"xJx m which affect the Lyapunov exponents in equations (123) and 
(124). Hence, the solutions to the systems (112), (124) and (112), (124), 
(125) can be regarded as the first and the second approximations, respectively, 
to the problem. Theoretically speaking, by considering next-order approxima- 
tions, a complete probabilistic structure of the solution to equation (111) can 
be reproduced. 

Application of the stabilization principle is significantly simplified for 
those systems whose boundaries of instability can be formulated analytically. 
For some cases of conservative chaos and simple turbulent flows new repre- 
sentations of solutions are given in Zak (1994). 

In the next section we will demonstrate the application of the stabilization 
principle to some dissipative chaotic systems by numerical elimination of 
positive local Lyapunov exponents. 
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9. APPLICATION OF THE STABILIZATION PRINCIPLE TO 
REPRESENTATION OF CHAOS 

9.1. Inertial Mot ions  

In order to clarify the main idea of the approach, let us return to the 
inertial motion of a particle M of unit mass in a smooth pseudosphere S having 
a constant negative curvature (64). As shown there, the orbital instability and 
therefore the chaotic behavior of the particle M can be eliminated by the 
elastic force (88), 

F = -ot2e, Ot 2 = const > -2WG,  G < 0 (126) 

proportional to the normal deviation �9 from the geodesic trajectory which is 
applied to the particle M. But such a force can appear as an inertial force if 
the motion of the particle M is referred to an appropriate noninertial system 
of coordinates. 

Indeed, so far this motion has been referred to an inertial system of 
coordinates q~, q2, where ql is the coordinate along the geodesic meridians 
and q2 is the coordinate along the parallels. Let us introduce a frame of 
reference which rotates about the axis of symmetry of the pseudosphere with 
the oscillatory transport velocity 

= 2% cos tot, to ___) oo (127) 

so that the components of the resultant velocity along the meridians and 
parallels are, respectively, 

Vl = ql, v2 = ql + 2~ cos tot (128) 

Since equation (128) has the same structure as equation (107), the Lagrangian 
of the motion of the particle M relative to the new (noninertial) frame of 
reference can be written in the following form [see equation (72)]: 

1 {exp[_2(_Go)U2q,]}(O 2 + 4)  (129) L *  = 0 ,  - 

The last term in equation (129) represents the contribution of the inertia 
forces in the new frame of reference. 

So far the transport velocity ~o has not been specified, and therefore the 
Lagrangian (129) has the same element of arbitrariness as the governing 
equations (112) describing chaotic motions. 

Now, based upon the stabilization principle, we are going to specify the 
transport motion in such a way that the original orbital instability of the 
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inertial motion of the particle M is eliminated. Turning to the condition (90), 
one obtains 

02L 
> - 2WGo (130) 

Oe2 -- 

where W = �89  is the kinetic energy of the particle. This condition can be 
satisfied if the transport velocity do is coupled with the normal deviation 
as -follows: 

1 
-G--o {exp[-2(-G~ = -WG~ (131) 

It follows from equation (92) that in this limit case the Lyapunov exponent 
of the relative motion in the new (noninertial) frame of reference will be zero: 

cr = - G o  - = 0, a2 - (9e2 

and the trajectories of perturbed motions do not diverge. The normal deviation 
from the trajectory of the relative motion (in the case of zero perturbed 
velocity ~0) can be written in the form 

q2 = q0 = const, q0 = q2(t = 0) (133) 

which means that in the new frame of reference an initial error to does 
not g row-- i t  remains constant. The relative motion along the trajectory is 
described by the differential equation following from the Lagrangian (129), 
which takes the following form [after substituting equation (131)]: 

1 
L = t~ 2 - G00 {exp[-2(-G~ - WG~176 (134) 

i.e., 

//t 2(-G~ {exp[-2(-Go)lrZql]}42 = 0 (135) 
Go 

But the original (unperturbed) motion was directed along the meridians, i.e., 
-- 0. Consequently, 

/tl = 0, ql = ~ = const (136) 

i.e., the relative motion along the trajectory is constant. 
However, this velocity is different from the original velocity Vo. Indeed, 

the total kinetic energy of the particle now consists of the kinetic energy of the 
motion along the trajectory and the kinetic energy of transverse fluctuations 
expressed by (131), i.e., 
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whence 

~o ~ + ~ 0  
~- = ~ ~ (qO)21 Go ] (137) 

o0 = v0[1 - (q~ < v0 (138) 

Thus, the original unstable (chaotic) motion is decomposed into the 
mean motion along the trajectory qz = const with the constant velocity (138) 
and transverse fluctuations whose kinetic energy is proportional to the original 
error q0 and to the degree of instability I G01. It is important to emphasize 
that both components of the motion are stable in the sense that the initial 
error in qz at t = 0 does not grow, and the initial error in qt at t = 0 grows 
linearly with time. 

Obviously the mean or averaged motion represents a macroscopic view 
of the particle behavior extracted from the microscopic world, while the 
irreversibility of this motion is manifested by the loss of the initial kinetic 
energy to microscopic fluctuations. 

It should be emphasized that the decomposition of the motion into 
regular and fluctuation components was enforced by the stabilization principle 
as a supplement to Newtonian mechanics [see equation (131)], while without 
this principle any theory where dynamical instability can occur is incomplete. 

9 . 2 .  P o t e n t i a l  M o t i o n s  

Based upon equations (116), for potential motions, the governing equa- 
tions can be written in the form 

0II  
= - - -  + a~) (139) ~1 "~ + F'~gll~gl ~ Oq,~ 

OH 
- -  - Q "  (140) 
Oq '~ 

where H is the potential energy of the dynamical system, and Q~0 are the 
inertia forces (or the "Reynolds stresses") caused by the rapidly oscillating 
transport motion of the frame of  reference. 

For simplicity, we will confine ourselves to a two-dimensional dynamical 
system assuming.that a = 1, 2. 

Following the same strategy as applied to inertial motions, let us couple 
the inertia forces with the parameters of the dynamical system in such a way 
that the original orbital instability (if it occurs) is eliminated. For that purpose, 
first we represent these forces in the form 

Off(,-) 
Q~(~) = - - -  (141) 

Oq ,~ 
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where lit0 is a fictitious potential energy equivalent to the kinetic energy of 
the fluctuations. Then, turning to the criteria of local orbital stability (86), 
one finds this potential energy ll(0 and consequently the inertia forces QD) 
from the condition that original local orbital instability is eliminated: 

G + 3iV(l-IF +_ n,,>)..] 
L 2w j 

1 [02(11 + II(o) 
-gq O4Y r/ j a(n _+ H.)).l Oq k j nin j = O, i, j = 1, 2 (142) 

Here W, G, and F/kj are defined by the parameters of the dynamical system 
(116) via equations (75), (77), and (78), respectively, and ni are the contravari- 
ant components of the unit normal n to the trajectory of the basic function. 

Equation (142) contains only one unknown II(,-), which can be found 
from it, and will define the inertia forces or the "Reynolds stresses" (141). 

It should be noticed that unlike the case of the inertial motion of a 
particle on a pseudosphere, here the Gaussian curvature G, as well as the 
gradients of the potential energy II, are not constants, and consequently the 
local Lyapunov exponents may be different from the global ones. This means 
that the condition (142) eliminates local positive exponents, and therefore 
the solution to (139) and (142) represents an overstabilized motion. Obviously, 
elimination of only global positive Lyapunov exponents would lead to solu- 
tions with less uncertainties, while some of local exponents in certain domains 
of the phase space may even remain positive. However, the strategy for 
elimination of global positive exponents is more sophisticated, and it can be 
implemented only numerically. 

It is worth noting that equation (142) is simplified to 

I F 0 2 ( l l  + r I ( o ) l  , . 
G + ~ [ "Oq'~O~ JnnJ = 0 (143) 

if the basic motion is characterized by zero potential forces 

all  
- 0 (144) Oq i 

This may occur, for instance, when the dynamical system is in relative 
equilibrium with respect to a moving frame. 

Thus, as in the previous case of inertial motion of a particle, here the 
Lagrange equations (139) are supplemented by the additional constraint (142) 
following from the stabilization principle. It is important to emphasize that 
this constraint is effective only in the case of orbital instability of (139); 
otherwise it is satisfied automatically. 
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As an illustration of the case of a potential system, we will consider the 
motion of a charged particle (charge - e ,  mass m) in a uniform magnetic 
field B in the vicinity of a metallic sphere (radius a) biased to a potential V0 
> 0: 

mr) = - e v  X B + eVv (145) 

where v = dP/dt is the velocity of the particle, and V = Vo(a/p) is the electrical 
potential due to the sphere. 

Equation (145) can be written in a dimensionless form: 

_ x  - Y  + Vx, r~z-  z 
~)x = r3 Vy, r)y = r3 r3 

where 

v~=X,  Vy= y, vz = z 

dx 
r 2 = X 2 + y2 + Z 2 

'r = toet, k 3 = eVoa/mcoZe, to = eBIm r ~ - -  h '  

(146) 

(147) 

As reported in Barone (1993), there are certain domains of initial condi- 
tions which lead to chaotic trajectories. The system is chaotic, for instance, 
a t x =  1.5, y = 0 ,  z = 4 . 0 ,  xx=  Or = v z = O a t t = O . W e h a v e r e p r o d u c e d  

these results (see Fig. 1) by solving (146) and (147) numerically. 
The implementation of the stabilization principle, i.e., simultaneous 

solution of equations (146) and (147) [after their Reynolds decomposition 
into the form (139)] and the constraint (142) were performed numerically. 
The numerical strategy was very simple: along with the basic solution, a 
perturbed solution was calculated and compared with the basic one after 
certain time steps; if the perturbed solution diverged faster than a prescribed 
time polynomial, then an appropriate Reynolds force was applied to suppress 
it; otherwise no actions were taken. The resulting trajectories in the same x, 
y, z phase space are plotted in Fig. 2. These trajectories represent an averaged 
or expected motion which is no longer chaotic. It is important to emphasize 
that this motion is stable in the sense that small changes of the initial conditions 
will cause small ~hanges in the motion. 

Actually this example elucidates the mechanism of transition from the 
Hamiltonian mechanics describing fully reversible mechanical processes on 
the microscopic level to irreversible macroscopic motions describing thermo- 
dynamic processes. By the same line of argumentation, the stabilization 
principle implements the preference to more probable states of the system 
over the less probable states. 
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10. DISCUSSION AND CONCLUSION 

The problem of irreversibility in thermodynamics was revisited and 
analyzed on the microscopic, stochastic, and macroscopic levels of descrip- 
tion. It was demonstrated that Newtonian dynamics (as well as any dynamical 
theory where chaotic solutions are possible) can be represented in the Rey- 
nolds form when each dynamical variable is decomposed into mean and 
fluctuation components. Additional equations coupling fluctuations and the 
mean values follow from the stabilization principle formulated in Zak (1994) 
and briefly described in the previous sections. The main idea of this principle 
is that the fluctuations must be selected from the condition that they suppress 
the original instability down to a neutral stability. Supplemented by the 
stabilization principle, the Hamiltonian or Lagrangian formalisms can 
describe the transition from fully reversible to irreversible motions as a result 
of the decomposition of chaotic motions (which are very likely to occur in 
many-body problems) into regular (macroscopic) motions and fluctuations. 
Actually the stabilization principle implements the preference to more proba- 
ble states of the system over the less probable states, and from that viewpoint 
it can be associated with the averaging procedure exploited in statistical 
mechanics. However, the averaging procedure was always considered as an 
"alien intrusion" into classical mechanics, and that led to many discussions 
about the problem of irreversibility on the macroscopic level. On the contrary, 
the stabilization principle is a part of Newtonian mechanics (as well as a 
part of any dynamical theory where chaotic motions can occur), and therefore 
it provides a formal mathematical explanation for the transition from fully 
reversible to irreversible processes. 

On the stochastic level of description, a new phenomenological force 
with non-Lipschitz properties has been introduced. This force, as a resultant 
of a large number of collisions of a selected particle with other particles, has 
characteristics which are uniquely defined by the thermodynamic parameters 
of the process under consideration, and it represents a part of the mathematical 
formalism describing random-walk-like processes without invoking any prob- 
abilistic arguments. 

Additional non-Lipschitz thermodynamic forces have been incorporated 
into macroscopic models of transport phenomena in order to introduce a time 
scale. These forces are effective only within a small domain around equilibria. 
Without causing any changes in other domains, they are responsible for the 
finite time of approaching equilibria. Such a property is very important for 
interpretation of irreversibility on the macroscopic scale. Indeed, there is 
always an extremely small (but nonzero) probability that a particle performing 
a random walk can return to its original position passing through all of its 
previous steps backward, and therefore this effect should not be excluded 
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from the solutions to the macroscopic equations if they are observed during 
an infinitely large period of time. However, these practically unrealistic 
situations may be excluded from consideration in the case of the modified 
macroscopic equations since they are characterized by a limited time scale. 
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